TD 2 - Trigonométrie

Entraînements

Calculer les réels suivants : $\cos\left(\frac{\pi}{12}\right)$, $\sin\left(\frac{\pi}{12}\right)$, $\cos\left(\frac{7\pi}{12}\right)$, $\cos\left(\frac{\pi}{8}\right)$ et $\sin\left(\frac{\pi}{8}\right)$.

Résoudre sur R les équations suivantes et représenter les solutions sur le cercle trigono-Exercice 2. métrique :

$$1. \cos(5x) = \frac{\sqrt{3}}{2}$$

3.
$$\tan\left(\frac{x}{2}\right) = -1$$

2.
$$\sin(4x) = -\frac{1}{2}$$

4.
$$\tan(2x) = -\sqrt{3}$$

Exercice 3. Résoudre dans \mathbb{R} , puis dans $[0, 2\pi[$ et enfin dans $]-\pi,\pi]$ les équations suivantes :

1.
$$\sin x - \cos x = \frac{\sqrt{6}}{2}$$

$$3. \sin x + \frac{1}{\sqrt{3}}\cos x = 0$$

2.
$$-\sqrt{3}\sin x + \cos x = \sqrt{2}$$

4.
$$\cos(2x) + \sqrt{3}\sin(2x) = \sqrt{2}$$

Exercice 4. Résoudre dans \mathbb{R} , puis dans $[0, 2\pi]$ les équations suivantes :

1.
$$\cos(3x-2) = \cos(2x-1)$$

6.
$$2\cos^2(3x) + 3\cos(3x) + 1 = 0$$

2.
$$\sin(3x - \frac{\pi}{3}) = \sin(2x + \frac{\pi}{6})$$

7.
$$2\sin^2 x = \sqrt{3}\sin(2x)$$

3.
$$\tan(x+1) + \tan(3x+1) = 0$$

8.
$$\sin\left(2x - \frac{\pi}{4}\right) = -\cos\left(x + \frac{\pi}{6}\right)$$

9. $\sqrt{3}\cos^2 x + 2\cos x \sin x - \sqrt{3}\sin^2 x = \sqrt{2}$

4.
$$\sin^2 x = \frac{1}{2}$$
5. $\sin^2 (2x) = \cos^2 (x)$

10.
$$1 + \cos x + \sin(5x) + \sin(6x) = 0$$

5.
$$\sin(2x) = \cos\left(\frac{x}{2}\right)$$

10.
$$1 + \cos x + \sin(5x) + \sin(6x) =$$

11. $\tan^4(x) + 2\tan^2(x) - 3 = 0$

Exercice 5.

1. Soit $x \in \mathbb{R} \setminus \{\pi + 2k\pi, k \in \mathbb{Z}\}$. On pose : $u = \tan\left(\frac{x}{2}\right)$. Établir les relations suivantes, et indiquer pour quelles valeurs de \boldsymbol{x} elles sont valides :

(a)
$$\cos x = \frac{1 - u^2}{1 + u^2}$$

(b)
$$\sin x = \frac{2u}{1+u^2}$$

(c)
$$\tan x = \frac{2u}{1 - u^2}$$

2. En utilisant ces relations, résoudre sur \mathbb{R} l'équation : $\cos x - 3\sin x + 2\tan\left(\frac{x}{2}\right) - 1 = 0$.

Exercice 6. Résoudre les inéquations suivantes dans \mathbb{R} , puis dans $[0, 2\pi[$ et $]-\pi,\pi]$:

1.
$$2\sin x - 1 < 0$$

4.
$$\sin(3x) \ge -\frac{\sqrt{3}}{2}$$

2.
$$2\cos(2x) > \sqrt{3}$$

3. $\frac{1}{\sqrt{3}}\tan(3x) > 1$

$$5. \sqrt{2}\cos(3x) \le 1$$

$$6. \tan(x) \le 1$$

Exercice 7. Résoudre sur R les inéquations suivantes et représenter l'ensemble des solutions sur le cercle trigonométrique:

1.
$$4\sin^2 x - (2 + 2\sqrt{3})\sin x + \sqrt{3} \le 0$$

6.
$$\cos(x) - \sin(x) \ge \frac{\sqrt{6}}{2}$$

2.
$$\tan^2 x - 1 < 0$$

7.
$$\sin(x) - \frac{1}{\sqrt{3}}\cos(x) \le -1$$

3.
$$2\cos^2(3x) - 3\cos(3x) + 1 \le 0$$

4. $\tan^2 x - (\sqrt{3} - 1)\tan x - \sqrt{3} < 0$

8.
$$\cos x + \sin x - 1 < 0$$

$$5. \ \frac{1}{4} \le \sin^2 x \le \frac{1}{2}$$

$$9. \ \sqrt{3}\cos x + \sin x - \sqrt{2} < 0$$

Type DS

Exercice 8. Soit f la fonction définie par $f(x) = \ln |\cos(x)\sin(x)|$.

- 1. Déterminer le domaine de définition \mathcal{D}_f de f.
- 2. Montrer que f est π périodique, paire et que : $\forall x \in \mathcal{D}_f$, $f\left(\frac{\pi}{2} x\right) = f(x)$. A quel intervalle peut-on réduire l'étude de la fonction f?
- 3. Montrer que f est dérivable sur $\left]0, \frac{\pi}{4}\right]$ et calculer sa dérivée. Dresser le tableau de variations de f sur cet intervalle.
- 4. Tracer la courbe de f en justifiant sa construction.

Exercice 9. 1. Résoudre l'inéquation d'inconnue y suivante :

$$\frac{y-3}{2y-3} \le 2y \quad (E_1)$$

2. En déduire les solutions sur $\mathbb R$ de l'inéquation d'inconnue X :

$$\frac{\sin^2(X) - 3}{2\sin^2(X) - 3} \le 2\sin^2(X) \quad (E_2)$$

3. Finalement donner les solutions sur $[0, 2\pi[$ de l'inéquation d'inconnue x:

$$\frac{\sin^2(2x + \frac{\pi}{6}) - 3}{2\sin^2(2x + \frac{\pi}{6}) - 3} \le 2\sin^2(2x + \frac{\pi}{6}) \quad (E_3)$$

Exercice 10. On considére l'inéquation :

$$(I): \frac{2\sin(x) - \sqrt{2}}{\sin(x)(2\cos(x) - 1)} > 0$$

- 1. Déterminer D: l'ensemble de définition de (I).
- 2. Résoudre (I) sur $[0, 2\pi] \cap D$. On pourra faire un tableau de signes.