TD 5.1 - Suites usuelles

Entraînements

Calculer le terme général, étudier la convergence, et calculer la somme des termes $S = \sum u_k$ pour les suites $(u_n)_{n \in \mathbb{N}}$ définies par $u_0 = 2$ et pour tout $n \in \mathbb{N}$:

1.
$$u_{n+1} = u_n + 3$$

4.
$$u_{n+1} = 3u_n$$

7.
$$u_{n+1} = 3u_n + 3$$

2.
$$u_{n+1} = u_n + \frac{1}{2}$$

3. $u_{n+1} = u_n - 5$

5.
$$u_{n+1} = \frac{u_n}{2}$$
6. $u_{n+1} = -5u_n$

8.
$$u_{n+1} = -\frac{u_n}{2} + \frac{1}{3}$$

9. $u_{n+1} = -u_n - 4$

3.
$$u_{n+1} = u_n - 5$$

6.
$$u_{n+1} = -5u_n$$

9.
$$u_{n+1} = -u_n - 4$$

Exercice 2. Déterminer en fonction de n, le terme u_n des suites qui vérifient

1.
$$u_0 = 1$$
, $u_1 = 2$, $\forall n \in \mathbb{N}^*$, $u_{n+1} = 2u_n + 3u_{n-1}$.

2.
$$u_0 = 1, u_1 = 0, \forall n \in \mathbb{N}, u_{n+2} = 4u_{n+1} - 4u_n$$

3.
$$u_0 = 2$$
, $u_1 = -3$, $\forall n \in \mathbb{N}$, $u_{n+2} = -8u_{n+1} - 16u_n$.

4.
$$u_1 = 1$$
, $u_2 = 1$, $\forall n \ge 3$, $u_n = u_{n-1} + u_{n-2}$.

5.
$$u_0 = 1$$
, $u_1 = 2$, $\forall n \in \mathbb{N}$, $u_{n+2} = -4u_n$.

Exercice 3. Pour ces suites définies par récurrence, calculer le terme général en fonction de n:

1.
$$u_1 = 1$$
 et $\forall n \in \mathbb{N}^*, \ u_{n+1} = \frac{3(n+1)}{2n} u_n$

2.
$$u_0 = 2 \text{ et } \forall n \in \mathbb{N}, \ u_{n+1} = 2u_n^3$$

Type DS

On définit deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ par $u_0=0$ $v_0=1$ Exercice 4.

$$\forall n \in \mathbb{N}, \ u_{n+1} = 2u_n - 4v_n \quad \text{ et } \quad v_{n+1} = u_n + 4v_n.$$

- 1. INFO Ecrire une fonction Python qui prend en argument un entier n et retourne les valeurs de u_n et v_n .
- 2. Montrer que pour tout $n \in \mathbb{N}$

$$u_{n+2} = 6u_{n+1} - 12u_n$$

- 3. Déterminer les solutions de $x^2 6x + 12 = 0$ et les mettre sous formes exponentielles.
- 4. En déduire la valeur de u_n en fonction de n.