Programme de colle : Semaine 10 Lundi 2 Décembre

1 Cours

- 1. Equations différentielles à coefficients constants
 - Résolution des équations de la forme y'(x) + ay(x) = b où $(a, b) \in \mathbb{R}^2$.
 - Forme des solutions des équations de la forme y'(x) + ay(x) = b(x) où $a \in \mathbb{R}^2$ et b est une fonction dérivable. On donnera la forme d'une solution particulière.
 - Résolution d'un probleme de Cauchy associé.
- 2. Vocabulaire des applications :
 - Image directe d'un ensemble par une fonction.
 - Applications injectives, surjectives, bijectives
 - TVI et théorème de la bijection
- 3. Systèmes linéaires :
 - Méthode du Pivot de Gauss
 - Notion de rang d'un système.
 - Systèmes à paramètres.
 - Vocabulaire : systèmes homogènes, échelonnés, de Cramer, compatibles.
- 4. Python:
 - Instruction conditionnelle (if/else)
 - Fonction
 - Boucle for, while
 - Liste

2 Exercices Types

- 1. Résoudre y'(x) + 2y(x) = 3 avec la condition initiale y(1) = 2
- 2. Résoudre y'(x) + 2y(x) = 3x + 1 avec la condition initiale y(1) = 2. On cherchera une solution particulière de la forme $f_p(x) = ax + b$ où $(a, b) \in \mathbb{R}^2$ sont des réels à déterminer.
- 3. On considère l'application $f: \mathbb{R} \to \mathbb{R}$ définie par $: x \mapsto x^3 3x$.
 - (a) Étudier les variations de f.
 - (b) Déterminer $f([1,2]), f(\mathbb{R}), f([-1,+\infty[)$.
- 4. Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \frac{2x}{1+x^2}$.
 - (a) L'application f est-elle injective de $\mathbb R$ dans $\mathbb R$? Surjective de $\mathbb R$ dans $\mathbb R$?
 - (b) Montrer que la restriction $g: [-1,1] \to [-1,1]$ est une bijection.
- 5. Déterminer le rang et résoudre les systèmes linéaires d'inconnues réelles suivants :

$$\begin{cases} 3x - y + z = 5 \\ 2x + y - z = 1 \\ x - y + z = 2 \\ 4x + y + z = 3 \end{cases}$$
 et
$$\begin{cases} x_1 + 2x_2 - x_3 + 3x_4 = 0 \\ x_2 + x_3 - 2x_4 + 2x_5 = 0 \\ 2x_1 + x_2 - 5x_3 = -4x_5 = 0 \end{cases}$$

6. Résoudre les systèmes suivants d'inconnues $(x,y) \in \mathbb{R}^2$ et de paramètre $\lambda \in \mathbb{R}$

$$\begin{cases} x + y = \lambda x \\ x - y = \lambda y \end{cases} et \begin{cases} - y = \lambda x \\ x + 2y = \lambda y \end{cases}$$

- 7. Ecrire une fonction Python qui prend en argument un entier n et retourne la valeur de u_n où $(u_n)_{n\in\mathbb{N}}$ est une des suites définies précédemment.
- 8. Ecrire une fonction Python qui prend en argument un entier la valeur de la somme $\sum_{k=1}^{n} k^7$