Correction DM3

Exercice 1. Donner l'ensemble de définition de

$$f(x) = \sqrt{e^x - 2}$$

Résoudre

$$f(x) \ge e^x - 4$$

Correction 1. f est bien définie pour tout x tel que $e^x - 2 \ge 0$ c'est à dire pour $e^x \ge 2$ soit $x \ge \ln(2)$

$$D_f = [\ln(2), +\infty[$$

On fait le changement de variable $e^x = X$, l'équaiton $f(x) \ge e^x - 4$ équivaut alors à

$$\sqrt{X-2} \ge X - 4 \quad (E')$$

(E') est bien définie sur $[2, +\infty[$

On étudie alors le signe de X-4

— Si $X - 4 \ge 0$, ie $X \in [4, +\infty[$.

$$E' \iff X - 2 \ge X^2 - 8X + 16$$
$$\iff X^2 - 9X + 18 \le 0$$

Le discriminant de $X^2-9X+18$ vaut $\Delta=9^2-4*18=81-72=9=3^2$ On a donc deux racines réelles :

$$X_1 = \frac{9+3}{2} = 6$$
 et $X_2 = \frac{9-3}{2} = 3$

Donc $(E') \iff (X-6)(X-3) \le 0$ d'où les solutions sur $[4, +\infty[$:

$$S_1 = [4, 6]$$

— Si X - 4 < 0, ie $X \in]-\infty, 4[$.

Alors comme $\sqrt{X-2} \ge 0$ et X-4 < 0, tous les réels de l'ensemble de définition sont solutions

$$S_2 = [2, 4]$$

Ainsi les solutions de (E') sont

$$S' = [2, 6]$$

On repasse à la variable x on a $e^x = X$ donc $x = \ln(X)$

Les solutions de l'équation
$$f(x) \ge e^x - 4$$
 sont $\mathcal{S} = [\ln(2), \ln(6)]$

Exercice 2. Ecrire (1+i) sous forme trigonométrique. En déduire la partie réelle et la partie imaginaire de

$$\frac{1}{(1+i)^n}$$

en fonction de n.

Exercice 3. Résoudre dans \mathbb{C} l'équation d'inconnue z et de paramétre $a \in \mathbb{R}$

$$z^2 + z + a = 0$$

Exercice 4. Soit $\mathbb U$ l'ensemble des complexes de module 1.

1. Calculer

$$\inf\left\{ \left| \frac{1}{z} + z \right|, z \in \mathbb{U} \right\}$$

- 2. Pour tout $z \in \mathbb{C}^*$ on note $\alpha(z) = \frac{1}{z} + \overline{z}$.
 - (a) Calculer le module de $\alpha(z)$ en fonction de celui de z.
 - (b) Montrer que pour tout x > 0 on a : $\frac{1}{x} + x \ge 2$.
 - (c) En déduire

$$\inf\{|\alpha(z)|, z \in \mathbb{C}^*\}$$

Correction 2.

1. Comme $z \in \mathbb{U}$, il existe $\theta \in [0, 2\pi[$ tel que $z = e^{i\theta}$. Donc

$$\left| \frac{1}{z} + z \right| = \left| e^{-i\theta} + e^{i\theta} \right|$$
$$= \left| 2\cos(\frac{\theta}{2}) \right|$$

Pour $\theta = \pi$ on a $\left| 2\cos(\frac{\theta}{2}) \right| = 0$ donc

$$\inf\left\{ \left| \frac{1}{z} + z \right|, z \in \mathbb{U} \right\} = 0$$

2. (a)

$$|\alpha(z)| = \left| \frac{1}{\overline{z}} + z \right|$$

$$= \left| \frac{1 + z\overline{z}}{\overline{z}} \right|$$

$$= \left| \frac{1 + |z|^2}{\overline{z}} \right|$$

$$= \frac{|1 + |z|^2}{|\overline{z}|}$$

$$= \frac{1 + |z|^2}{|z|}$$

$$= \frac{1 + |z|^2}{|z|}$$

(b) Pour tout x > 0 on a

$$x + \frac{1}{x} - 2 = \frac{x^2 - 2x + 1}{x}$$
$$= \frac{(x-1)^2}{x} \ge 0$$

Donc pour tout x > 0, $x + \frac{1}{x} - 2 \ge 0$.

(c) On a $|\alpha(1)| = \frac{1}{|1|} + |1| = 2$ et on a vu que pour tout $z \in \mathbb{C}^*$, $|\alpha(z)| \ge 2$ donc

$$\inf\{|\alpha(z)|, z \in \mathbb{C}^*\} = 2$$